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CCPSO2

PSO variant developed to solve complex high scale
optimization problems.

Relative low cost and good performance when compared to
counterparts.

Grouping of swarms’ dimensions is similar to the method used
on Cooperative (multiswarm) PSO.
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Tackle high dimensionality by:

Permuting all n dimensions at every iteration t.
Randomly changing partition size s if no improvement is
obtained.
Each swarm is assigned the same number of dimensions.

Given :
n = number of dimensions
S = {s1, s2, ...}
s ∈ S = Dimensions per swarm, randomly chosen

Calculated :→ K× s = n
K = number of Swarms
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Convergence speed is controlled by using a lbest (local best)
ring topology.

Particle updates are performed by using:

Cauchy (C) or Gaussian (N ) distributions.
Personal best, lbest and swarm’s best to guide the direction.

xi ,j (t + 1) =

{
yi ,j (t) + C(1)|yi ,j (t)− ŷ ′i ,j (t)|, if rand ≤ r

ŷ ′i ,j (t) +N (0, 1)|yi ,j (t)− ŷ ′i ,j (t)| otherwise.
(1)

where:
xi ,j : Particle’s dimension
yi ,j : Particle’s personal best
ŷ ′i ,j : Ring local best (lbest)
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Algorithm 1 Pseudocode of CCPSO2
1: b(k, z) = (P1.ŷ, · · · ,Pk−1.ŷ, z,Pk+1.ŷ, · · ·PK .ŷ)
2: Create and initialize K swarms with s dimensions each
3: repeat
4: if f (ŷ) has not improved then randomly choose s from S and let K = n/s

5: Randomly permutate all n dimension indices
6: Construct K swarms, each with s dimensions
7: for each swarm k ∈ [1 · · ·K ] do
8: for each particle i ∈ [1 · · · p] do
9: if f (b(k,Pk .xi )) < f (b(k,Pk .yi )) then

10: Pk .yi ← Pk .xi

11: if f (b(k,Pk .yi )) < f (b(k,Pk .ŷ)) then
12: Pk .ŷ← Pk .yi

13: for each particle i ∈ [1 · · · p] do
14: Pk .ŷ

′
i ← localBest(Pk .yi−1,Pk .yi ,Pk .yi+1)

15: if f (b(k,Pk .ŷ)) < f (ŷ) then the kth part of ŷ is replaced by Pk .ŷ

16: for each swarm k ∈ [1 · · ·K ] do
17: for each particle i ∈ [1 · · · p] do
18: Update particle Pk .xi using (1)

19: until termination criterion is met
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Limitation Addressed

Random rearrangement of swarm’s dimensions is one of the
strongest characteristics of CCPSO2.

However, it can also be a weakness if S is not satisfactory.

Manual setup of S is time consuming and mostly will not test
many possibilities.

Random selection of s will not consider search phase
characteristics.
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Proposed Approach

Search characteristics can greatly benefit results.

Well known behaviours include:

Exploratory search reduces probability of local minima traps.

Intensification search increases chance of finding better local
results.

Improved results can be obtained by:

Exploring at initial stages of the search.
Intensificating at later stages.
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Well known behaviours include:

Each swarm has its own partially independent state.

The less the number of swarms, more dimensions will be
dependent of the same swarm state.

The more the number of swarms, less dimensions will restrict
the swarms’ movements.
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Considering that:

Intensification is usually implemented by restricting the
swarm’s movement.

Then:

Hypothetically, since a small number of swarms restrict
swarms’ movement, it also could increase the likelihood of
intensificating the search.
Likewise, a higher number of swarms could increase the
probability of exploring the search space.
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CCPSO2-IP

Replace S by a boost function that controls the number of
swarms maxK .

Aggressiveness of boost function is controlled by a boost rate
parameter Br .
maxK is reduced iteratively a fixed number of times maxTries
by a static factor Kr .
Once maxK is minimum, the boost function is called again to
define a new maxK .

The process is repeated until the end of the search.
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Figure : Iterative Partitioning method for Exponential boost function.

BoostE (t) =
Br

exp(12 ∗ Br ∗
(

t
Tmax

)
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Figure : IP for Sigmoid boost function (for Br = 1.0).

BoostS (t) =
Br

1.0 + exp(12 ∗ Br ∗
(

t
Tmax

)
− 6 ∗ Br )
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Figure : IP for Linear boost function (for Br = 1.0).

BoostL(t) = −Br ∗
(

t

Tmax

)
+ Br
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Algorithm 2 CCPSO2-IP
1: maxK(t) = MIN(MAX (n ∗ Boost(t), 1), n)
2: K = maxK = maxK(0),Kr = 1/maxTries, fitImprovement = 1
3: Create K swarms
4: for t in [1 · · ·Tmax ] do
5: if fitImprovement < minImprovement then
6: if maxTries iterations without improvement then
7: if K ≤ MAX (maxK ∗ Kr , 1)) then
8: if maxTries updates on maxK without improvement then
9: maxK = maxK(0) . force exploration

10: else . Iteratively reduce maxK
11: Calculate maxK(t)

12: K = maxK
13: else . Iteratively reduce K
14: K = MIN(MAX (K −MAX (maxK ∗ Kr , 1), 1),maxK)

15: if new K is different from previous K then
16: Recreate swarms with new K
17: else
18: Permutate dimensions and resize swarms
19: Recalculate PBest’s and KBest’s fitness values
20: else . give it a 50% chance of permutation
21: if rand < 0.5 then
22: Permutate dimension and resize swarms
23: Recalculate PBest’s and KBest’s fitness
24: Execute CCPSO2 search and Calculate fitImprovement
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Results

Benchmark used to validate the method:

Congress on Evolutionary Computation 2013/2015
(CEC13/15) for Large Scale Global Optimization (LSGO).
15 Benchmark Functions
1000 dimensions

Iterative Partitioning method was compared to CCPSO2 and
classic PSO.
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Results for PSO, CCPSO2 and CCPSO2-IP

PSO Average CCPSO2 Average CCPSO2-IP S Average CCPSO2-IP L Average

Averaged Difference when compared with CCPSO2-IP E

Dimensions=1000, Particles=15, Evaluations=500K, Independent runs=10

Fitness

Y=0 is CCPSO-IP E result, Y>0 is higher fitness (worse), Y<0 is lower fitness (better)

Figure : Averages and Std.Dev. on logarithmic scale compared to
CCPSO2-IP E [15 benchmark functions, 500K fitness eval., 15 particles, 10
independent runs].
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Figure : Comparison between methods for F2 benchmark function [1M
fitness eval., 30 particles, 25 independent runs. PSO: [w=0.7; c1=0.8;
c2=1.1]. CCPSO2: S={2,5,10,50,100,250}. CCPSO2-IP: E[Br=0.5,
maxTries=2]; S[Br=0.521, maxTries=3]; L[Br=0.5, maxTries=5]].
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Figure : Last 200K fitness evaluations for CCPSO2-IP methods on F2
[1M fitness eval., 30 particles, 25 independent runs. CCPSO2-IP: E[Br=0.5,
maxTries=2]; S[Br=0.521, maxTries=3]; L[Br=0.5, maxTries=5]].
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Conclusion

CCPSO2-IP showed:

Superior results when compared to CCPSO2 and PSO.

Specially on difficult functions.

Good capacity of escaping from local minima.

Even after long stagnation periods.
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